
1

An Externalized Infrastructure for Self-Healing Systems

David S. Wile and Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way, Suite 1010
Marina del Rey, CA 90292, USA

{dwile,aegyed}@teknowledge.com

Abstract

Software architecture descriptions can play a wide
variety of roles in the software lifecycle, from
requirements specification, to logical design, to
implementation architectures. In addition, execution
architectures can be used both to constrain and
enhance the functionality of running systems, e.g.
security architectures and debugging architectures.
Along with others from DARPA’s DASADA program
we proposed an execution infrastructure for so-called
self-healing, self-adaptive systems – systems that
maintain a particular level of healthiness or quality of
service (QoS). This externalized infrastructure does
not entail any modification of the target system –
whose health is to be maintained. It is driven by a
reflective model of the target system’s operation to
determine what aspects can be changed to effect
repair. Herein we present that infrastructure along
with an example implemented in accord with it.1

1. Introduction

While the use of architectural models in the
requirements specification to implementation phases is
becoming more common, research into dynamic
software architecture models is beginning to extend the
utility of software architecture specification into the
execution phase of the software lifecycle. Three
approaches dominate their use here. First, together
with others [7,9], we advocate the definition of a
covering architecture that encompasses the entire
possible locus of the running system’s architectural
elements [13].

Another approach is to adhere to a specific
architectural style (e.g. C2 [11]) that facilitates the

1 This work was sponsored by DARPA contract number

F30602-00-C-0200.

dynamic incorporation of new components while
guaranteeing interaction constraints remain invariant.

The third approach, examined here, involves the use
of a specific architectural “harness” to facilitate
dynamic system reconfiguration, as required for so-
called “self-healing” or “self-adaptive” systems –
systems that maintain a particular level of healthiness
or quality of service (QoS). Figure 1 illustrates an
architectural diagram of an externalized infrastructure
that can be used to monitor, interpret, analyze, and
reconfigure running systems. Essentially a layer of
probes is installed into a system just before it starts to
run, probes that report significant data on a probe
event-bus. Gauges translate and interpret this data with
respect to models that abstract from the
implementation, often using an architectural model of
the target system to locate logical events. The
information from these gauges is transmitted onto the
gauge bus where other gauges can react and control
decisions can be made. A layer of “effectors” is then
invoked to effect changes in the target system, either by
adapting existing components – perhaps by tweaking
parameters – or by reconfiguring the system itself.

This infrastructure was proposed by several
members of DARPA’s DASADA community [7,12,14]
where it was only partially developed before funding
was dropped; however, the probe and gauge interaction
protocols were standardized [3,8] based on Siena
event-broadcasting middleware [4].

2. Architectural Modeling

The Target Architectural Model (modeling the “cloud”
in Figure 1) plays a key role in the infrastructure. The
architectural model essentially establishes the structural
vocabulary; each layer can rely on the model for
understanding its role in the system and the information
it is responsible for. To see how events in the physical
architecture map to events in the logical, target

2

architecture model consider the following scenarios,
both ensuing after probes and gauges have been placed
by the control layer:

2.1. Static Architecture Scenario

• Probes emit implementation-level events like
“process D006 opened file ‘C:\Program Files\log.txt’
for write” or “process E001 used 2021.”

• Gauges provide interpretations of these events by
first determining what logical architectural entities
are being referred to – here, perhaps a logical
application, WinZIP (D006), and another logical
application, MS PowerPoint (E001), for example.
This mapping from implementation terms (process
ids) to logical architectural components must be
established in the architectural model by the
processes that originally set up the system and
probes. The gauges additionally interpret implicit
information from the probes; for example, perhaps
2021 means port 2021.

• The gauges are then “read” by the control layer to
see if any action should be taken. For example,
assume that the ILE for E001 is interpreted as “MS
PowerPoint (E001) is attempting to access port
2021.” Furthermore, assume that the control layer
has knowledge of good, suspicious, and bad events.
For example, it is known that “access to ports 1000-
3000 is suspicious,” e.g., because normal application
operation does not require such access. In such a
case, the control layer may decide to ask the user of
the application to authorize or deny access to port
2021. The control layer may then communicate the
user response to authorize or deny the access to the
effector layer through an adaptation event (AE).

• Then the effector layer will use the
architectural model to determine that
process E001 needs to be adapted –
requiring the inverse translation from
before, now from logical architecture to
physical architecture – and determine
what implementation-level response
corresponds to authorize or deny events,
e.g., raise an implementation-level “port
access failed exception” in the latter
case.

Notice that nothing about the architecture
itself changed during this scenario; no
modules or connections were created or
destroyed. Moreover, the repair was
effected by a simple parameter change to a
running module; no new resources were
brought to bear. A similar scenario might

require dynamic target architecture changes:

2.2. Dynamic Architecture Scenario

• Probes emit architecturally significant
implementation-level events, such as “process D006
spawned new process F008 of type MS Word.”

• Gauges interpret these events and modify the
corresponding physical and logical architectural
models. Here, perhaps, because F008 was spawned
by D006, the system knows that there must be a new
logical application, MS Word (F008) now and that
the logical application WinZIP (D006) is the creator
(parent) of MS Word (F008). We call this process
identification of physical models with pre-defined,
logical architecture models. That is, with dynamic
architectures, the whole range of possible
architectures is pre-specified in a covering
architecture [10,13]; those elements of the
architecture that have been identified with the
physical architecture are kept track of. Hence, at any
given time, only the identified modules and
connectors constitute the actual logical architecture.

• Imagine that some time later an event similar to the
one above, “MS Word (F011) is attempting to access
port 2021” is transmitted by the probes and reported
by the gauges. The control layer at this point could
issue a user request to authorize/deny this attempt or
it could change the system’s running architecture by
issuing a reconfiguration event to the effector layer.
This time perhaps the command issued would be to
“replace the MS Word process (F011) with another
physical application (e.g., MS WordPad, which can
read MS Word documents but is less subject to
exploitation by viruses).

A
rc

hi
te

ct
ur

al
 M

od
el

s

Interpretation

Gauges

Gauge Bus

Interpretation

Gauges

Gauge Bus

Collection

Probes

Probe Bus
Collection

Probes

Probe Bus

Adaptation &
Configuration

Effectors

Adaptation &
Configuration

Effectors

Controllers

Decision &
Display

Controllers

Decision &
Display

Running
System

Figure 1. Infrastructure Architecture

3

• The effector layer again has to map the logical MS
Word component into the physical process F011 and
it also has to understand how to remove that
component and substitute a new one of type MS
WordPad, a rather tricky activity in any event.

So there are two separable dynamic architecture
activities here: modeling the dynamic architecture as it
evolves and reconfiguring the architecture via the
control layer.

3. An Example: Safe EMail

Although the entire externalized infrastructure
architecture was never realized, we did attempt to
reformulate a program that itself constitutes a self-
healing harness for repairing the errant behavior of
processes spawned by email attachments, our ”Safe
Email” program [1].

Figure 2 depicts the instantiation of the Safe Email
self-healing infrastructure (Figure 1) for the email
application Microsoft Outlook. Its purpose is to detect
and prevent malicious behavior caused by viruses
received through email. Email viruses are either
embedded in the email itself to exploit security
weaknesses in MS Outlook (e.g., macro viruses) or
they are unleashed by attachments opened by
unsuspecting users.

To counter the security threat posed by viruses,
three kinds of probes are required, probes for
observing: 1) the occurrence of events that could be
considered “suspicious,” 2) the creation of new
processes (New PID), and 3) the destruction of existing

processes (Old PID). All three
probes are based on wrapper
technology, where calls to PC
Windows-based platforms’
Dynamic Link Libraries are
intercepted and our code is
invoked before (conditionally)
invoking the original code [2],
reporting suspicious activity via
the probe bus [3].

If a virus exploits a weakness
in MS Outlook, then it will
engage in suspicious activities
that are observed through the
first type of probe. The other
probes maintain the target
architectural model to
coordinate faults with spawned
processes. When attachments
are opened, new processes are
created to view/execute these
attachments (e.g., MS Word or a

Web Browser). Therefore, if a virus is embedded in an
attachment, the new process, and not MS Outlook, will
then engage in suspicious activities. Observing
“suspicious” activities is thus extended to processes
spawned by MS Outlook (New PID) until they are
destroyed (Old PID).

The “Safe Email” gauge acts as a mediator to collect
and translate probe information broadcast on the probe
bus. It may combine multiple implementation-level
events to produce architecture-level events that abstract
from the implementation. It may also translate
observed information with the help of the “Logic Map”
gauge to interpret how implementation-level data
relates to target architectural elements and to record the
creation hierarchy of applications. MS Outlook sits at
the top of this hierarchy. When it spawns a process by
opening an attachment, a “child application” is created
to represent the new process along with its type and id.
Since a spawned process may spawn yet other
processes, the target architecture model supports a tree
hierarchy of “parent” applications and their “children.”

Gauges cannot judge whether suspicious activities,
caused by MS Outlook or any of its child processes, are
truly malicious or not. If a suspicious event is
observed the first time (“New Danger”) then the
control layer displays a warning message (“Display
Warning”) to let the user decide about the
maliciousness of the event (“Query User”). The user
may allow the activity, deny it, or kill the application.
The user may also reconfigure the control layer to

Censor

Old DangerQuery Authority

New Danger

Pr
oc

es
s

M
od

el
s

Simulate

Display Models

Logic Map

Interpretation

Collection

Adaptation

Decision

Probe Bus

Gauge Bus

Configuration

Authorize Kill Process

Suspicious New PID Old PID

Display Warning

Safe Email

Display

Outlook Process

Controllers
Gauges
Probes
Effectors

Query User

Figure 2. Idealized Safe Email Infrastructure Architecture

4

ignore similar events (“Old Danger”) in the future
(equivalent to an automatic allow).

Probes may reside in different processes and on
different machines, so the infrastructure can be used to
monitor multiple email users. A so-called “Authority”
is given access to a GUI showing the target
architectures with processes decorated by border colors
indicating how well behaved processes are with respect
to producing suspicious activities that the users deny,
e.g., red for malicious.

In addition, the architectural elements are simulated
in the “Simulate” gauge to determine the level of trust
of individual applications, based on users’ responses to
warnings of suspicious activities and to “guilt
assessment” imposed on parents of misbehaving child
processes [6]. This information is also visualized for
each process.

The authority is allowed to determine that specific
processes are misbehaving for enough users that
subsequent attempts to invoke the suspicious actions
should automatically be denied. “Query Authority”
uses MailIDs to ensure that previously denied events
are denied automatically again if they originated from
the same email, e.g., even for different users.

The layer of effectors is invoked to effect changes in
the running system. Effectors may “authorize” or
“censor” (deny) suspicious events, or may even kill
processes.

4. Conclusions and Future Work

Although we noticed problems in applying the
infrastructure to the Safe Email example, we think this
approach is a feasible way to decouple self-healing
aspects of a target system from its functionality.
Problems with externalization arise when there is a
coupling between an effector that corrects a problem
and a sensor that detects it, e.g., a sensor detects danger
and suspends itself, awaiting a decision about how to
proceed. The effector that allows it to proceed is
strongly coupled, something that cannot be indicated
with the infrastructure as it stands. Similar problems
concern how to model the user and administrator.

Nonetheless, we feel the future of this infrastructure
will best be to serve as “a template” for imposing self-
healing systems on applications, as suggested by Jeff
Magee [5]. In fact, we are designing an architectural
style that is consistent with the infrastructure that
allows refined descriptions of the relationships of the
sensors, gauges, controllers, and effectors. The choice
of which architecture description method to use –
infrastructure or style – will depend on the volatility of
the infrastructure itself.

5. References

 [1] Balzer, R.: “Assuring the Safety of Opening Email
Attachments,” Proceedings of the DARPA DISCEX
Conference , Anaheim, California, June 2001, pp.1257.

 [2] Balzer, R. and Goldman, N.: “Mediating Connectors: A
Non-ByPassable Process Wrapping Technology,”
Proceedings of the DARPA DISCEX Conference, South
Carolina, January 2000, pp.361-368.

 [3] Balzer, R.: “The DASADA Probe Infrastructure,”
Technical Report, Teknowledge Corp. (available from
authors), 2003.

 [4] Carzaniga A., Rosenblum D. S., and Wolf A. L.:
Achieving scalability and expressiveness in an Internet-
scale event notification service. ACM Transactions on
Computer Systems (TOCS) 19(3), 2001, 332-383.

 [5] Crane, S., Dulay, N., Fossa, H., Kramer, J., Magee, J.,
Sloman, M., and Twidle, K.: “Configuration
Mangagement for Distributed Systems ,” Proceedings of
the IFIP/IEEE International Symposium on Integrated
Network Management, Santa Barbara, California, 1995.

 [6] Egyed, A. and Wile, D.: “Statechart Simulator for
Modeling Architectural Dynamics,” Proceedings of the
2nd Working International Conference on Software
Architecture (WICSA), August 2001, pp.87-96.

 [7] Garlan, D. and Schmerl, B.: “Model-based Adaptation
for Self-Healing Systems,” Proceedings of the First
ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS), South Carolina, November 2002, pp.27-32.

 [8] Garlan, D., Schmerl, B., and Chang, J.: “Using gauges
for architecture-based monitoring and adaptation,”
Proceedings of a Working Conference on Complex and
Dynamic Systems Architecture, Brisbane, Australia,
December 2001.

 [9] Mikic-Rakic, M., Mehta, N. R., and Medvidovic, N.:
“Architectural style requirements for self-healing
systems,” Proceedings of the First Workshop on Self-
Healing Systems (WOSS), Charleston, South Carolina,
November 2002.

 [10] Monroe, R.: “Capturing software architecture design
expertise with Armani,” Technical Report CMU-CS-98-
163, Carnegie Mellon University, 1998.

 [11] Oreizy, P., Medvidovic, N., and Taylor, R.:
“Architecture-Based Runtime Software Evolution,”
Proceedings of the 20th International Conference on
Software Engineering (ICSE), Kyoto, Japan, 1998,
pp.177-186.

 [12] Valleto, G. and Kaiser, G.: “A Case Study in Software
Adaptation,” Proceedings of the First ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS ’02),
Charleston, South Carolina, November 2002, pp.73-78.

 [13] Wile D. S.: Modeling Architecture Description
Languages Using AML. Automated Software
Engineering Journal 8(1), 2001, 63-88.

 [14] Wile, D. S.: “Towards a Synthesis of Dynamic
Architecture Event Languages,” Proceedings of the First
ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS), Charleston, South Carolina, November 2002,
pp.79-84.

