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Abstract 

 
Software architecture descriptions can play a wide 
variety of roles in the software lifecycle, from 
requirements specification, to logical design, to 
implementation architectures.  In addition, execution 
architectures can be used both to constrain and 
enhance the functionality of running systems, e.g. 
security architectures and debugging architectures.  
Along with others from DARPA’s DASADA program 
we proposed an execution infrastructure for so-called 
self-healing, self-adaptive systems – systems that 
maintain a particular level of healthiness or quality of 
service (QoS).  This externalized infrastructure does 
not entail any modification of the target system – 
whose health is to be maintained.  It is driven by a 
reflective model of the target system’s operation to 
determine what aspects can be changed to effect 
repair.  Herein we present that infrastructure along 
with an example implemented in accord with it.1 
 
1. Introduction 
 

While the use of architectural models in the 
requirements specification to implementation phases is 
becoming more common, research into dynamic 
software architecture models is beginning to extend the 
utility of software architecture specification into the 
execution phase of the software lifecycle.  Three 
approaches dominate their use here.  First, together 
with others [7,9], we advocate the definition of a 
covering architecture that encompasses the entire 
possible locus of the running system’s architectural 
elements [13]. 

Another approach is to adhere to a specific 
architectural style (e.g. C2 [11]) that facilitates the 
                                                           
1 This work was sponsored by DARPA contract number 

F30602-00-C-0200. 

dynamic incorporation of new components while 
guaranteeing interaction constraints remain invariant. 

The third approach, examined here, involves the use 
of a specific architectural “harness” to facilitate 
dynamic system reconfiguration, as required for so-
called “self-healing” or “self-adaptive” systems – 
systems that maintain a particular level of healthiness 
or quality of service (QoS).  Figure 1 illustrates an 
architectural diagram of an externalized infrastructure 
that can be used to monitor, interpret, analyze, and 
reconfigure running systems.  Essentially a layer of 
probes is installed into a system just before it starts to 
run, probes that report significant data on a probe 
event-bus.  Gauges translate and interpret this data with 
respect to models that abstract from the 
implementation, often using an architectural model of 
the target system to locate logical events.  The 
information from these gauges is transmitted onto the 
gauge bus where other gauges can react and control 
decisions can be made.  A layer of “effectors” is then 
invoked to effect changes in the target system, either by 
adapting existing components – perhaps by tweaking 
parameters – or by reconfiguring the system itself. 

This infrastructure was proposed by several 
members of DARPA’s DASADA community [7,12,14] 
where it was only partially developed before funding 
was dropped; however, the probe and gauge interaction 
protocols were standardized [3,8] based on Siena 
event-broadcasting middleware [4].   
 
2. Architectural Modeling 
 
The Target Architectural Model (modeling the “cloud” 
in Figure 1) plays a key role in the infrastructure.  The 
architectural model essentially establishes the structural 
vocabulary; each layer can rely on the model for 
understanding its role in the system and the information 
it is responsible for.  To see how events in the physical 
architecture map to events in the logical, target 
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architecture model consider the following scenarios, 
both ensuing after probes and gauges have been placed 
by the control layer: 
 

2.1. Static Architecture Scenario 
 

• Probes emit implementation-level events like 
“process D006 opened file ‘C:\Program Files\log.txt’ 
for write” or “process E001 used 2021.” 

• Gauges provide interpretations of these events by 
first determining what logical architectural entities 
are being referred to – here, perhaps a logical 
application, WinZIP (D006), and another logical 
application, MS PowerPoint  (E001), for example.  
This mapping from implementation terms (process 
ids) to logical architectural components must be 
established in the architectural model by the 
processes that originally set up the system and 
probes.  The gauges additionally interpret implicit 
information from the probes; for example, perhaps 
2021 means port 2021. 

• The gauges are then “read” by the control layer to 
see if any action should be taken.  For example, 
assume that the ILE for E001 is interpreted as “MS 
PowerPoint (E001) is attempting to access port 
2021.”  Furthermore, assume that the control layer 
has knowledge of good, suspicious, and bad events.  
For example, it is known that “access to ports 1000-
3000 is suspicious,” e.g., because normal application 
operation does not require such access.  In such a 
case, the control layer may decide to ask the user of 
the application to authorize or deny access to port 
2021.  The control layer may then communicate the 
user response to authorize or deny the access to the 
effector layer through an adaptation event (AE). 

• Then the effector layer will use the 
architectural model to determine that 
process E001 needs to be adapted – 
requiring the inverse translation from 
before, now from logical architecture to 
physical architecture – and determine 
what implementation-level response 
corresponds to authorize or deny events, 
e.g., raise an implementation-level “port 
access failed exception” in the latter 
case. 

Notice that nothing about the architecture 
itself changed during this scenario; no 
modules or connections were created or 
destroyed.  Moreover, the repair was 
effected by a simple parameter change to a 
running module; no new resources were 
brought to bear.  A similar scenario might 

require dynamic target architecture changes: 
 

2.2. Dynamic Architecture Scenario 
 

• Probes emit architecturally significant 
implementation-level events, such as “process D006 
spawned new process F008 of type MS Word.” 

• Gauges interpret these events and modify the 
corresponding physical and logical architectural 
models.  Here, perhaps, because F008 was spawned 
by D006, the system knows that there must be a new  
logical application, MS Word (F008) now and that 
the logical application WinZIP (D006) is the creator 
(parent) of MS Word (F008).  We call this process 
identification of physical models with pre-defined, 
logical architecture models.  That is, with dynamic 
architectures, the whole range of possible 
architectures is pre-specified in a covering 
architecture [10,13]; those elements of the 
architecture that have been identified with the 
physical architecture are kept track of.  Hence, at any 
given time, only the identified modules and 
connectors constitute the actual logical architecture. 

• Imagine that some time later an event similar to the 
one above, “MS Word (F011) is attempting to access 
port 2021” is transmitted by the probes and reported 
by the gauges.  The control layer at this point could 
issue a user request to authorize/deny this attempt or 
it could change the system’s running architecture by 
issuing a reconfiguration event to the effector layer.  
This time perhaps the command issued would be to 
“replace the MS Word process (F011) with another 
physical application (e.g., MS WordPad, which can 
read MS Word documents but is less subject to 
exploitation by viruses). 
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• The effector layer again has to map the logical MS 
Word component into the physical process F011 and 
it also has to understand how to remove that 
component and substitute a new one of type MS 
WordPad, a rather tricky activity in any event. 

So there are two separable dynamic architecture 
activities here: modeling the dynamic architecture as it 
evolves and reconfiguring the architecture via the 
control layer. 
 
3. An Example: Safe EMail 
 
Although the entire externalized infrastructure 
architecture was never realized, we did attempt to 
reformulate a program that itself constitutes a self-
healing harness for repairing the errant behavior of 
processes spawned by email attachments, our ”Safe 
Email” program [1].  

Figure 2 depicts the instantiation of the Safe Email 
self-healing infrastructure (Figure 1) for the email 
application Microsoft Outlook.  Its purpose is to detect 
and prevent malicious behavior caused by viruses 
received through email.  Email viruses are either 
embedded in the email itself to exploit security 
weaknesses in MS Outlook (e.g., macro viruses) or 
they are unleashed by attachments opened by 
unsuspecting users.  

To counter the security threat posed by viruses, 
three kinds of probes are required, probes for 
observing: 1) the occurrence of events that could be 
considered “suspicious,” 2) the creation of new 
processes (New PID), and 3) the destruction of existing 

processes (Old PID).  All three 
probes are based on wrapper 
technology, where calls to PC 
Windows-based platforms’ 
Dynamic Link Libraries are 
intercepted and our code is 
invoked before (conditionally) 
invoking the original code [2], 
reporting suspicious activity via 
the probe bus [3]. 

If a virus exploits a weakness 
in MS Outlook, then it will 
engage in suspicious activities 
that are observed through the 
first type of probe.  The other 
probes maintain the target 
architectural model to 
coordinate faults with spawned 
processes.  When attachments 
are opened, new processes are 
created to view/execute these 
attachments (e.g., MS Word or a 

Web Browser).  Therefore, if a virus is embedded in an 
attachment, the new process, and not MS Outlook, will 
then engage in suspicious activities.  Observing 
“suspicious” activities is thus extended to processes 
spawned by MS Outlook (New PID) until they are 
destroyed (Old PID). 

The “Safe Email” gauge acts as a mediator to collect 
and translate probe information broadcast on the probe 
bus.  It may combine multiple implementation-level 
events to produce architecture-level events that abstract 
from the implementation.  It may also translate 
observed information with the help of the “Logic Map” 
gauge to interpret how implementation-level data 
relates to target architectural elements and to record the 
creation hierarchy of applications.  MS Outlook sits at 
the top of this hierarchy.  When it spawns a process by 
opening an attachment, a “child application” is created 
to represent the new process along with its type and id.  
Since a spawned process may spawn yet other 
processes, the target architecture model supports a tree 
hierarchy of “parent” applications and their “children.”  

Gauges cannot judge whether suspicious activities, 
caused by MS Outlook or any of its child processes, are 
truly malicious or not.  If a suspicious event is 
observed the first time (“New Danger”) then the 
control layer displays a warning message (“Display 
Warning”) to let the user decide about the 
maliciousness of the event (“Query User”).  The user 
may allow the activity, deny it, or kill the application.  
The user may also reconfigure the control layer to 
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ignore similar events (“Old Danger”) in the future 
(equivalent to an automatic allow).   

Probes may reside in different processes and on 
different machines, so the infrastructure can be used to 
monitor multiple email users.  A so-called “Authority” 
is given access to a GUI showing the target 
architectures with processes decorated by border colors 
indicating how well behaved processes are with respect 
to producing suspicious activities that the users deny, 
e.g., red for malicious. 

In addition, the architectural elements are simulated 
in the “Simulate” gauge to determine the level of trust 
of individual applications, based on users’ responses to 
warnings of suspicious activities and to “guilt 
assessment” imposed on parents of misbehaving child 
processes [6].  This information is also visualized for 
each process. 

The authority is allowed to determine that specific 
processes are misbehaving for enough users that 
subsequent attempts to invoke the suspicious actions 
should automatically be denied.  “Query Authority” 
uses MailIDs to ensure that previously denied events 
are denied automatically again if they originated from 
the same email, e.g., even for different users.  

The layer of effectors is invoked to effect changes in 
the running system.  Effectors may “authorize” or 
“censor” (deny) suspicious events, or may even kill 
processes. 

 
4. Conclusions and Future Work 

 
Although we noticed problems in applying the 
infrastructure to the Safe Email example, we think this 
approach is a feasible way to decouple self-healing 
aspects of a target system from its functionality.  
Problems with externalization arise when there is a 
coupling between an effector that corrects a problem 
and a sensor that detects it, e.g., a sensor detects danger 
and suspends itself, awaiting a decision about how to 
proceed.  The effector that allows it to proceed is 
strongly coupled, something that cannot be indicated 
with the infrastructure as it stands.  Similar problems 
concern how to model the user and administrator.  

Nonetheless, we feel the future of this infrastructure 
will best be to serve as “a template” for imposing self-
healing systems on applications, as suggested by Jeff 
Magee [5].  In fact, we are designing an architectural 
style that is consistent with the infrastructure that 
allows refined descriptions of the relationships of the 
sensors, gauges, controllers, and effectors.  The choice 
of which architecture description method to use – 
infrastructure or style – will depend on the volatility of 
the infrastructure itself.   
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